论文标题

Fréchet歧管的一些关键点结果

Some critical point results for Fréchet manifolds

论文作者

Eftekharinasab, Kaveh

论文摘要

我们证明了一个所谓的链接定理及其一些推论,即山传球定理和凯勒(Keller)$ c^1 $功能的三个关键点定理在$ c^1 $ - freechet歧管上功能。我们的方法取决于变形结果,而这种变形结果未通过考虑负伪梯度流来实现。此外,对于特里切特歧管之间的映射,我们根据宫殿的条件提供了一组足够的条件,该条件表明何时局部差异为全球性。

We prove a so-called linking theorem and some of its corollaries, namely a mountain pass theorem and a three critical points theorem for Keller $ C^1$-functional on $ C^1 $- Frechet manifolds. Our approach relies on a deformation result which is not implemented by considering the negative pseudo-gradient flows. Furthermore, for mappings between Frechet manifolds we provide a set of sufficient conditions in terms of the Palais-Smale condition that indicates when a local diffeomorphism is a global one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源