论文标题
利用贝叶斯神经网络的随机预测进行流体模拟
Leveraging Stochastic Predictions of Bayesian Neural Networks for Fluid Simulations
论文作者
论文摘要
我们通过流体模拟中贝叶斯神经网络(BNN)的非确定性预测来研究不确定性估计和多模式。为此,我们将BNN部署在三个具有挑战性的实验测试箱中的复杂性增加:我们表明,当用作稳态流体流动预测的替代模型时,BNN提供了准确的物理预测以及不确定性的明智估计。此外,我们从Navier-Stokes模拟中尝试了扰动的时间序列,并评估了BNN捕获多模式发展的能力。尽管我们的发现表明这对于大型扰动是有问题的,但我们的结果表明,网络学会在这种情况下正确预测高度不确定性。最后,我们在求解器与湍流血浆流相互作用的背景下研究BNN。我们发现基于BNN的校正网络可以稳定粗粒模拟并成功创建多模式轨迹。
We investigate uncertainty estimation and multimodality via the non-deterministic predictions of Bayesian neural networks (BNNs) in fluid simulations. To this end, we deploy BNNs in three challenging experimental test-cases of increasing complexity: We show that BNNs, when used as surrogate models for steady-state fluid flow predictions, provide accurate physical predictions together with sensible estimates of uncertainty. Further, we experiment with perturbed temporal sequences from Navier-Stokes simulations and evaluate the capabilities of BNNs to capture multimodal evolutions. While our findings indicate that this is problematic for large perturbations, our results show that the networks learn to correctly predict high uncertainties in such situations. Finally, we study BNNs in the context of solver interactions with turbulent plasma flows. We find that BNN-based corrector networks can stabilize coarse-grained simulations and successfully create multimodal trajectories.