论文标题

Hubbard模型的累积绿色功能方法

The cumulant Green's functions method for the Hubbard model

论文作者

Lira, Renan, Riseborough, Peter, Silva-Valencia, Jereson, Figueira, Marcos

论文摘要

我们使用累积的绿色功能方法(CGFM)研究了外部磁场的作用下的单频哈伯德模型。该方法的起点是将包含N相关位点(种子)的簇对角度化,并采用从集群溶液中计算出的累积物,以获得晶格的完整绿色功能。所有计算都是直接完成的,不需要自洽过程。我们根据热力学Bethe Ansatz和量子转移矩阵方法的相应确切结果基准了间隙,地面能量和从CGFM获得的双重占用率的一维结果。随着群集大小的增加,CGFM的结果趋向于确切的结果。实现了状态密度的粒子孔对称性。该方法可以应用于一个,二维或三维Hubbard Hamiltonians的任何参数空间,也可以将其扩展到其他强相关的模型,例如Anderson Hamiltonian,T-J,Kondo和Coqqblin-Schrieffer。 我们还计算了正磁场作为化学电位的函数的影响,并确定了有限簇效应(第六阶段),其特征是部分填充的频带和负磁化(n_up <n_down)。该阶段对于包含多达n = 8个位点的簇生存,但随着群集的大小增加而倾向于消失。我们在Spintronics中包括一个简单的应用,在该应用程序中,我们将这些簇用作相关的量子点,以实现与Hubbard Lead连接时的单电子晶体管。我们使用磁场和化学电位作为n = 7和n = 8的参数来计算相图,包括新的集群相。

We study the single-band Hubbard model under the action of an external magnetic field using the cumulant Green's functions method (CGFM). The starting point of the method is to diagonalize a cluster containing N correlated sites (seed) and employ the cumulants calculated from the cluster solution to obtain the full Green's functions for the lattice. All calculations are done directly, and no self-consistent process is needed. We benchmark the one-dimensional results for the gap, the ground-state energy, and the double occupancy obtained from the CGFM against the corresponding exact results of the thermodynamic Bethe ansatz and the quantum transfer matrix methods. The results for the CGFM tend systematically to the exact one as the cluster size increases. The particle-hole symmetry of the density of states is fulfilled. The method can be applied to any parameter space for one, two, or three-dimensional Hubbard Hamiltonians and can also be extended to other strongly correlated models, like the Anderson Hamiltonian, the t-J, Kondo, and Coqblin-Schrieffer models. We also calculate the effects of positive magnetic fields as a function of the chemical potential, and we identify a finite cluster effect (Phase VI) characterized by a partially filled band and negative magnetization (n_up < n_down). This phase survives for clusters containing up to N=8 sites but tends to disappear as the size of the cluster increases. We include a simple application to spintronics, where we used these clusters as correlated quantum dots to realize a single-electron transistor when connected to Hubbard leads. We calculate the phase diagram, including the new cluster phase, using the magnetic field and chemical potential as parameters for N=7 and N=8.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源