论文标题

使用新型的分数梯度方法进行CNN后传播

Using a novel fractional-order gradient method for CNN back-propagation

论文作者

Taresh, Mundher Mohammed, Zhu, Ningbo, Ali, Talal Ahmed Ali, Alghaili, Mohammed, Guo, Weihua

论文摘要

近年来,计算机辅助诊断工具经历了快速的增长和发展。其中,深度学习是最复杂,最受欢迎的工具。在本文中,研究人员提出了一种新颖的深度学习模型,并将其应用于Covid-19诊断。我们的模型使用分数演算的工具,该工具具有提高梯度方法的性能的潜力。为此,研究人员提出了一种基于Caputo定义的卷积神经网络的反向传播的分数梯度方法。但是,如果仅使用Caputo定义的无限序列的第一项来近似分数衍生物,则记忆的长度被截断。因此,具有固定内存步骤和可调术语的分数梯度(FGD)方法用于更新图层的权重。在COVIDX数据集上进行了实验,以证明快速收敛,良好的准确性以及绕过局部最佳点的能力。我们还比较了开发的分数神经网络和整数神经网络的性能。结果证实了我们提出的模型在诊断Covid-19的诊断中的有效性。

Computer-aided diagnosis tools have experienced rapid growth and development in recent years. Among all, deep learning is the most sophisticated and popular tool. In this paper, researchers propose a novel deep learning model and apply it to COVID-19 diagnosis. Our model uses the tool of fractional calculus, which has the potential to improve the performance of gradient methods. To this end, the researcher proposes a fractional-order gradient method for the back-propagation of convolutional neural networks based on the Caputo definition. However, if only the first term of the infinite series of the Caputo definition is used to approximate the fractional-order derivative, the length of the memory is truncated. Therefore, the fractional-order gradient (FGD) method with a fixed memory step and an adjustable number of terms is used to update the weights of the layers. Experiments were performed on the COVIDx dataset to demonstrate fast convergence, good accuracy, and the ability to bypass the local optimal point. We also compared the performance of the developed fractional-order neural networks and Integer-order neural networks. The results confirmed the effectiveness of our proposed model in the diagnosis of COVID-19.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源