论文标题

Nilpotent弱关联和对称莱布尼兹代数的代数和几何分类

The algebraic and geometric classification of nilpotent weakly associative and symmetric Leibniz algebras

论文作者

Alvarez, María Alejandra, Kaygorodov, Ivan

论文摘要

本文致力于复杂$ 4 $二维的弱点弱关联的完整代数和几何分类,复杂的$ 4 $二维对称的leibniz代数和复杂的$ 5 $ d $ dibermensional nilpotent nilpotent symmetric symmetric leibniz algebras。特别是,我们证明了各种复杂的$ 4 $维度对称的Leibniz代数没有Vergne(Grunewald-O'Halloran物业)(仅由Nilpotent代数形成了不可修复的组成部分),但另一方面,它具有vergne属性(它没有严格的Nililgebotent Albras)。

This paper is devoted to the complete algebraic and geometric classification of complex $4$-dimensional nilpotent weakly associative, complex $4$-dimensional symmetric Leibniz algebras, and complex $5$-dimensional nilpotent symmetric Leibniz algebras. In particular, we proved that the variety of complex $4$-dimensional symmetric Leibniz algebras has no Vergne--Grunewald--O'Halloran Property (there is an irreducible component formed by only nilpotent algebras), but on the other hand, it has Vergne Property (there are no rigid nilpotent algebras).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源