论文标题
Nilpotent弱关联和对称莱布尼兹代数的代数和几何分类
The algebraic and geometric classification of nilpotent weakly associative and symmetric Leibniz algebras
论文作者
论文摘要
本文致力于复杂$ 4 $二维的弱点弱关联的完整代数和几何分类,复杂的$ 4 $二维对称的leibniz代数和复杂的$ 5 $ d $ dibermensional nilpotent nilpotent symmetric symmetric leibniz algebras。特别是,我们证明了各种复杂的$ 4 $维度对称的Leibniz代数没有Vergne(Grunewald-O'Halloran物业)(仅由Nilpotent代数形成了不可修复的组成部分),但另一方面,它具有vergne属性(它没有严格的Nililgebotent Albras)。
This paper is devoted to the complete algebraic and geometric classification of complex $4$-dimensional nilpotent weakly associative, complex $4$-dimensional symmetric Leibniz algebras, and complex $5$-dimensional nilpotent symmetric Leibniz algebras. In particular, we proved that the variety of complex $4$-dimensional symmetric Leibniz algebras has no Vergne--Grunewald--O'Halloran Property (there is an irreducible component formed by only nilpotent algebras), but on the other hand, it has Vergne Property (there are no rigid nilpotent algebras).