论文标题
两类稳定分层周期性水波的对称性
The symmetry for two class of steady stratified periodic water waves
论文作者
论文摘要
在本文中,我们主要考虑两类行进的分层周期性水波,一个具有负(或没有)表面张力,另一个具有恒定的Bernoulli功能和停滞点。我们首先建立了具有负(或没有)表面张力的分层水波的对称结果,但使用修改后的最大原理不停滞。此外,只要知道单调性能,也可以获得具有恒定Bernoulli功能和停滞点的分层水波的对称特性。
In this paper, we mainly consider two class of travelling stratified periodic water waves, one with negative (or without) surface tension and the other with constant Bernoulli's function and stagnation points. We first establish the symmetry result for stratified water waves with negative (or without) surface tension, but without stagnation by using the modified maximum principle. Furthermore, the symmetry property of stratified water waves with constant Bernoulli's function and stagnation points is also obtained provided the monotonic property is known.