论文标题
部分可观测时空混沌系统的无模型预测
One-loop central-emission vertex for two gluons in $\mathcal{N}=4$ super Yang-Mills theory
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
A necessary ingredient for extending the BFKL equation to next-to-next-to-leading logarithmic (NNLL) accuracy is the one-loop central emission vertex (CEV) for two gluons which are not strongly ordered in rapidity. Here we consider the one-loop six-gluon amplitude in $\mathcal{N}=4$ super Yang-Mills (SYM) theory in a central next-to-multi-Regge kinematic (NMRK) limit, we show that its dispersive part factorises in terms of the two-gluon CEV, and we use it to extract the one-loop two-gluon CEV for any helicity configuration within this theory. This is a component of the two-gluon CEV in QCD. Although computed in the NMRK limit, both the colour structure and the kinematic dependence of the two-gluon CEV capture much of the complexity of the six-gluon amplitudes in general kinematics. In fact, the transcendental functions of the latter can be conveniently written in terms of impact factors, trajectories, single-emission CEVs and a remainder, which is a function of the conformally invariant cross ratios which characterise the six-gluon amplitudes in planar $\mathcal{N}=4$ SYM. Finally, as expected, in the MRK limit the two-gluon CEV neatly factorises in terms of two single-emission CEVs.