论文标题

物理知识的深神经网络,用于经典弹性性的替代建模

A physics-informed deep neural network for surrogate modeling in classical elasto-plasticity

论文作者

Eghbalian, Mahdad, Pouragha, Mehdi, Wan, Richard

论文摘要

在这项工作中,我们提出了一个深层的神经网络体系结构,该结构可以有效地近似经典的弹塑性构成关系。该网络充满了经典弹性塑性的关键物理方面,包括将菌株的添加剂分解为弹性和塑料部分,以及非线性增量弹性。这导致了物理知识的神经网络(PINN)替代模型,称此处称为弹性塑料神经网络(EPNN)。详细的分析表明,将这些物理学嵌入神经网络的体系结构中有助于对网络进行更有效的培训,同时较少的培训数据,同时还增强了外推能力,用于在培训数据之外加载训练机制。 EPNN的结构是模型和与材料无关的,即可以适应多种弹性塑料材料类型,包括土地材料和金属;实验数据可以直接用于培训网络。为了证明所提出的结构的鲁棒性,我们将其一般框架调整为沙子的弹性行为。我们使用从材料点仿真产生的合成数据,该数据基于相对先进的基于膨胀的本构模型来训练神经网络。通过预测具有不同初始密度的沙子的未看到的应变控制的载荷路径,探索了EPNN优于常规神经网络结构的优势。

In this work, we present a deep neural network architecture that can efficiently approximate classical elasto-plastic constitutive relations. The network is enriched with crucial physics aspects of classical elasto-plasticity, including additive decomposition of strains into elastic and plastic parts, and nonlinear incremental elasticity. This leads to a Physics-Informed Neural Network (PINN) surrogate model named here as Elasto-Plastic Neural Network (EPNN). Detailed analyses show that embedding these physics into the architecture of the neural network facilitates a more efficient training of the network with less training data, while also enhancing the extrapolation capability for loading regimes outside the training data. The architecture of EPNN is model and material-independent, i.e. it can be adapted to a wide range of elasto-plastic material types, including geomaterials and metals; and experimental data can potentially be directly used in training the network. To demonstrate the robustness of the proposed architecture, we adapt its general framework to the elasto-plastic behavior of sands. We use synthetic data generated from material point simulations based on a relatively advanced dilatancy-based constitutive model for granular materials to train the neural network. The superiority of EPNN over regular neural network architectures is explored through predicting unseen strain-controlled loading paths for sands with different initial densities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源