论文标题

单层MOS $ _2 $导热率和热边界电导的底物依赖性

Substrate-Dependence of Monolayer MoS$_2$ Thermal Conductivity and Thermal Boundary Conductance

论文作者

Gabourie, Alexander J., Koroglu, Cagil, Pop, Eric

论文摘要

已知二维(2D)材料(如MOS $ _2 $)的热性能受到与环境相互作用的影响,但这主要仅通过SIO $ _2 $底物进行了研究。在这里,我们比较了单层MOS $ _2 $的导热率(TC)和热边界电导(TBC),并在无晶格(A-)和Crystalline(C-)Sio $ _2 $,Aln,Al $ _2 $ _2 $ o $ o $ _3 $和$ \ textit {h} $ - bn monolayolays andolarays anderalyics中。 The room temperature TC of MoS$_2$ is ~38 Wm$^{-1}$K$^{-1}$ on amorphous substrates and up to ~68 Wm$^{-1}$K$^{-1}$ on crystalline substrates, with most of the difference due to substrate interactions with long-wavelength MoS$_2$ phonons (< 2 THz). $ \ textit {h} $ - bn单层用作MOS $ _2 $和基板之间的缓冲区,导致MOS $ _2 $ TC增加高达50%。长度依赖性计算揭示了〜2 $μ$ m以下的TC尺寸效应,并表明MOS $ _2 $ TC是尺寸 - 但不限制在〜100 nm以下的基板。我们还发现,MOS $ _2 $的TBC带有C-AL $ _2 $ o $ $ _3 $超过两倍,尽管这两者都具有类似的MOS $ _2 $ TC,这表明TC和TBC可以独立调整。最后,我们比较了所有底物上MOS $ _2 $晶体管的热电阻,以表明MOS $ _2 $ TBC是长通道(> 150 nm)设备的热量去除量最重要的参数,而TBC和TC对于短通道也同样重要。这项工作为2D材料在各种底物上的电热应用提供了重要的见解。

The thermal properties of two-dimensional (2D) materials, like MoS$_2$, are known to be affected by interactions with their environment, but this has primarily been studied only with SiO$_2$ substrates. Here, we compare the thermal conductivity (TC) and thermal boundary conductance (TBC) of monolayer MoS$_2$ on amorphous (a-) and crystalline (c-) SiO$_2$, AlN, Al$_2$O$_3$, and $\textit{h}$-BN monolayers using molecular dynamics. The room temperature TC of MoS$_2$ is ~38 Wm$^{-1}$K$^{-1}$ on amorphous substrates and up to ~68 Wm$^{-1}$K$^{-1}$ on crystalline substrates, with most of the difference due to substrate interactions with long-wavelength MoS$_2$ phonons (< 2 THz). An $\textit{h}$-BN monolayer used as a buffer between MoS$_2$ and the substrate causes the MoS$_2$ TC to increase by up to 50%. Length-dependent calculations reveal TC size effects below ~2 $μ$m and show that the MoS$_2$ TC is size- but not substrate-limited below ~100 nm. We also find that the TBC of MoS$_2$ with c-Al$_2$O$_3$ is over twice that with c-AlN despite a similar MoS$_2$ TC on both, indicating that the TC and TBC could be tuned independently. Finally, we compare the thermal resistance of MoS$_2$ transistors on all substrates to show that MoS$_2$ TBC is the most important parameter for heat removal for long-channel (> 150 nm) devices, while TBC and TC are equally important for short channels. This work provides important insights for electro-thermal applications of 2D materials on various substrates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源