论文标题

FAIRDMS:通过数据和模型重用的快速模型培训

fairDMS: Rapid Model Training by Data and Model Reuse

论文作者

Ali, Ahsan, Sharma, Hemant, Kettimuthu, Rajkumar, Kenesei, Peter, Trujillo, Dennis, Miceli, Antonino, Foster, Ian, Coffee, Ryan, Thayer, Jana, Liu, Zhengchun

论文摘要

由于Linac Cooherent Light Source(LCLS-II)和高级光子源升级(APS-U)等工具产生的数据迅速提取可行的信息,由于高(最高为TB/S)数据速率,因此变得越来越具有挑战性。常规的基于物理的信息检索方法很难快速检测有趣的事件,以便及时关注罕见事件或纠正错误。机器学习〜(ML)学习廉价替代分类器的方法是有希望的选择,但是当仪器或样品变化导致ML性能降解时可能会灾难性地失败。为了克服此类困难,我们提出了一个新的数据存储和ML模型培训架构,旨在组织大量数据和模型,以便在检测到模型降解时,可以快速查询先前的模型和/或数据,并以新的条件检索并进行了更合适的模型。我们表明,与当前最新的训练速度提高了200倍,以及端到端模型更新时间的92倍加速度,我们的方法最多可以达到100倍数据标记的速度。

Extracting actionable information rapidly from data produced by instruments such as the Linac Coherent Light Source (LCLS-II) and Advanced Photon Source Upgrade (APS-U) is becoming ever more challenging due to high (up to TB/s) data rates. Conventional physics-based information retrieval methods are hard-pressed to detect interesting events fast enough to enable timely focusing on a rare event or correction of an error. Machine learning~(ML) methods that learn cheap surrogate classifiers present a promising alternative, but can fail catastrophically when changes in instrument or sample result in degradation in ML performance. To overcome such difficulties, we present a new data storage and ML model training architecture designed to organize large volumes of data and models so that when model degradation is detected, prior models and/or data can be queried rapidly and a more suitable model retrieved and fine-tuned for new conditions. We show that our approach can achieve up to 100x data labelling speedup compared to the current state-of-the-art, 200x improvement in training speed, and 92x speedup in-terms of end-to-end model updating time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源