论文标题

sudakov的颜色界面二元性二元性在非苏匹配纯阳米尔斯理论中

Color-Kinematics Duality for Sudakov Form Factor in Non-Supersymmetric Pure Yang-Mills Theory

论文作者

Li, Zeyu, Yang, Gang, Zhang, Jinxuan

论文摘要

我们研究了非苏格拉式的pure yang-mills理论中$ {\ rm tr} $ $ {\ rm tr}(f^2)$的颜色和运动学之间的二元性。我们构建了表现出最大两个循环的颜色二元性偶性的集成。由Momenta和极化向量的Lorentz产品给出了所得的分子,它们具有与Feynman规则相同的循环动量力量。 $ d $维单位性削减额度对集成数进行了检查,并且在任何维度上都是有效的。我们发现,在两个循环中需要进行无量漏气和t的拓扑来实现颜色界面偶性。有趣的是,两环解决方案包含大量的自由参数,表明双重性可能在较高的循环订单下保持。

We study the duality between color and kinematics for the Sudakov form factors of ${\rm tr}(F^2)$ in non-supersymmetric pure Yang-Mills theory. We construct the integrands that manifest the color-kinematics duality up to two loops. The resulting numerators are given in terms of Lorentz products of momenta and polarization vectors, which have the same powers of loop momenta as that from the Feynman rules. The integrands are checked by $d$-dimensional unitarity cuts and are valid in any dimension. We find that massless-bubble and tadpole topologies are needed at two loops to realize the color-kinematics duality. Interestingly, the two-loop solution contains a large number of free parameters suggesting the duality may hold at higher loop orders.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源