论文标题
$κ$-PoincaréHopf代数的小组理论描述
A group theoretic description of the $κ$-Poincaré Hopf algebra
论文作者
论文摘要
在文献中众所周知,与$κ$-Poincaré代数相关的动量空间由Lie Group $ \ Mathsf {a} \ Mathsf {n}(3)$描述。在这封信中,我们表明,可以从$ \ mathsf {so(1,4)} $ group的iWasawa分解开始。
It is well known in the literature that the momentum space associated to the $κ$-Poincaré algebra is described by the Lie group $\mathsf{A}\mathsf{N}(3)$. In this letter we show that the full $κ$-Poincaré Hopf algebra structure can be obtained from rather straightforward group-theoretic manipulations starting from the Iwasawa decomposition of the of the $\mathsf{SO(1,4)}$ group.