论文标题
部分可观测时空混沌系统的无模型预测
Vanishing lines in chromatic homotopy theory
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We show that at the prime 2, for any height $h$ and any finite subgroup $G \subset \mathbb{G}_h$ of the Morava stabilizer group, the $RO(G)$-graded homotopy fixed point spectral sequence for the Lubin--Tate spectrum $E_h$ has a strong horizontal vanishing line of filtration $N_{h, G}$, a specific number depending on $h$ and $G$. It is a consequence of the nilpotence theorem that such homotopy fixed point spectral sequences all admit strong horizontal vanishing lines at some finite filtration. Here, we establish specific bounds for them. Our bounds are sharp for all the known computations of $E_h^{hG}$. Our approach involves investigating the effect of the Hill--Hopkins--Ravenel norm functor on the slice differentials. As a result, we also show that the $RO(G)$-graded slice spectral sequence for $(N_{C_2}^{G}\bar{v}_h)^{-1}BP^{(\!(G)\!)}$ shares the same horizontal vanishing line at filtration $N_{h, G}$. As an application, we utilize this vanishing line to establish a bound on the orientation order $Θ(h, G)$, the smallest number such that the $Θ(h, G)$-fold direct sum of any real vector bundle is $E_h^{hG}$-orientable.