论文标题

部分可观测时空混沌系统的无模型预测

A variational characterization of calibrated submanifolds

论文作者

Cheng, Da Rong, Karigiannis, Spiro, Madnick, Jesse

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Let $M$ be a fixed compact oriented embedded submanifold of a manifold $\overline{M}$. Consider the volume $\mathcal{V} (\overline{g}) = \int_M \mathsf{vol}_{(M, g)}$ as a functional of the ambient metric $\overline{g}$ on $\overline{M}$, where $g = \overline{g}|_M$. We show that $\overline{g}$ is a critical point of $\mathcal{V}$ with respect to a special class of variations of $\overline{g}$, obtained by varying a calibration $μ$ on $\overline{M}$ in a particular way, if and only if $M$ is calibrated by $μ$. We do not assume that the calibration is closed. We prove this for almost complex, associative, coassociative, and Cayley calibrations, generalizing earlier work of Arezzo-Sun in the almost Kähler case. The Cayley case turns out to be particularly interesting, as it behaves quite differently from the others. We also apply these results to obtain a variational characterization of Smith maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源