论文标题

乳房超声诊断的自我监督病变识别

Self Supervised Lesion Recognition For Breast Ultrasound Diagnosis

论文作者

Guo, Yuanfan, Yang, Canqian, Lin, Tiancheng, Li, Chunxiao, Zhang, Rui, Xu, Yi

论文摘要

以前的基于深度学习的计算机辅助诊断(CAD)系统将处理与独立图像相同病变的多种视图。由于超声图像仅描述了3D病变的部分2D投影,因此这种范式忽略了病变的不同观点之间的语义关系,这与传统诊断不一致,在传统诊断中,Sonographers分析了至少两种观点的病变。在本文中,我们提出了一个多任务框架,该框架将良性/恶性分类任务与病变识别(LR)补充,该任务有助于利用单个病变的多个视图之间的关系,以学习病变的完整表示。具体来说,LR任务采用对比度学习来鼓励表示同一病变的多种观点并排斥不同病变的表示。因此,该任务促进了一种表示不仅对病变的视图变化的表示,而且还捕获细粒度的特征以区分不同的病变。实验表明,随着两个子任务相互补充,并增强了超声图像的学习表示,提出的多任务框架可以提高良性/恶性分类的性能。

Previous deep learning based Computer Aided Diagnosis (CAD) system treats multiple views of the same lesion as independent images. Since an ultrasound image only describes a partial 2D projection of a 3D lesion, such paradigm ignores the semantic relationship between different views of a lesion, which is inconsistent with the traditional diagnosis where sonographers analyze a lesion from at least two views. In this paper, we propose a multi-task framework that complements Benign/Malignant classification task with lesion recognition (LR) which helps leveraging relationship among multiple views of a single lesion to learn a complete representation of the lesion. To be specific, LR task employs contrastive learning to encourage representation that pulls multiple views of the same lesion and repels those of different lesions. The task therefore facilitates a representation that is not only invariant to the view change of the lesion, but also capturing fine-grained features to distinguish between different lesions. Experiments show that the proposed multi-task framework boosts the performance of Benign/Malignant classification as two sub-tasks complement each other and enhance the learned representation of ultrasound images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源