论文标题

大型工业传感器的多尺度异常检测

Multi-scale Anomaly Detection for Big Time Series of Industrial Sensors

论文作者

Ding, Quan, Liu, Shenghua, Zhou, Bin, Shen, Huawei, Cheng, Xueqi

论文摘要

鉴于多元大型时间序列,我们可以在发生异常时立即检测到它们吗?许多现有作品通过学习时间序列与重建框架中应该偏离的时间来检测异常。但是,由于优化算法无法负担这么长的系列,因此大多数模型必须将大时间序列切成小块。提出了问题:这种削减是否污染了固有的语义段,例如句子中的标点符号不正确?因此,我们提出了一种基于重建的异常检测方法,MISSGAN,迭代地学习解码和编码粗段中的自然平滑时间序列,并从基于HMM基于HMM的低维表示中找到一个更精细的段。结果,从多尺度的细分市场中学习,Missgan可以在对抗性正则化和额外的条件状态的帮助下重建有意义且健壮的时间序列。 Missgan不需要标签,也不需要普通实例的标签,从而广泛适用。实际水网络传感器的工业数据集进行的实验表明,我们的Missgan的表现优于基准,具有可扩展性。此外,我们使用在CMU运动数据集上的案例研究来证明我们的模型可以很好地区分出意外的手势和给定的条件运动。

Given a multivariate big time series, can we detect anomalies as soon as they occur? Many existing works detect anomalies by learning how much a time series deviates away from what it should be in the reconstruction framework. However, most models have to cut the big time series into small pieces empirically since optimization algorithms cannot afford such a long series. The question is raised: do such cuts pollute the inherent semantic segments, like incorrect punctuation in sentences? Therefore, we propose a reconstruction-based anomaly detection method, MissGAN, iteratively learning to decode and encode naturally smooth time series in coarse segments, and finding out a finer segment from low-dimensional representations based on HMM. As a result, learning from multi-scale segments, MissGAN can reconstruct a meaningful and robust time series, with the help of adversarial regularization and extra conditional states. MissGAN does not need labels or only needs labels of normal instances, making it widely applicable. Experiments on industrial datasets of real water network sensors show our MissGAN outperforms the baselines with scalability. Besides, we use a case study on the CMU Motion dataset to demonstrate that our model can well distinguish unexpected gestures from a given conditional motion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源