论文标题

使用高斯流程加速嘈杂的VQE优化

Accelerating Noisy VQE Optimization with Gaussian Processes

论文作者

Mueller, Juliane, Lavrijsen, Wim, Iancu, Costin, de Jong, Wibe

论文摘要

将经典优化器与量子芯片上的评估相结合的混合变分量子算法是在当前噪声,中间尺度量子(NISQ)设备上显示量子优势的最有希望的候选者。在目标函数评估中,经典优化器必须在存在噪声的情况下表现良好,否则它将成为算法中最弱的链接。我们介绍了使用高斯工艺(GP)作为替代模型的使用,以减少噪声的影响并提供高质量的种子以逃避局部最小值,无论是真实的还是噪声引起的。我们在本地优化的基础上将其构建为框架,在本研究中,我们选择了隐式过滤(IMFIL)。 IMFIL是一种最先进的,无梯度的方法,在比较研究中,在嘈杂的VQE问题上已显示出胜过表现。结果是一种新方法:“ GP+IMFIL”。我们表明,当存在噪声时,GP+IMFIL方法发现结果比独立的Imfil更接近真正的全局最小值,并且对于更大的维度问题而言,其效果特别好。在多模式景观中使用GP播种本地搜索的结果不同:尽管它能够对Imfil独立改善,但它并不始终如一,并且只有比其他,更详尽的多阶段方法受到限制。

Hybrid variational quantum algorithms, which combine a classical optimizer with evaluations on a quantum chip, are the most promising candidates to show quantum advantage on current noisy, intermediate-scale quantum (NISQ) devices. The classical optimizer is required to perform well in the presence of noise in the objective function evaluations, or else it becomes the weakest link in the algorithm. We introduce the use of Gaussian Processes (GP) as surrogate models to reduce the impact of noise and to provide high quality seeds to escape local minima, whether real or noise-induced. We build this as a framework on top of local optimizations, for which we choose Implicit Filtering (ImFil) in this study. ImFil is a state-of-the-art, gradient-free method, which in comparative studies has been shown to outperform on noisy VQE problems. The result is a new method: "GP+ImFil". We show that when noise is present, the GP+ImFil approach finds results closer to the true global minimum in fewer evaluations than standalone ImFil, and that it works particularly well for larger dimensional problems. Using GP to seed local searches in a multi-modal landscape shows mixed results: although it is capable of improving on ImFil standalone, it does not do so consistently and would only be preferred over other, more exhaustive, multistart methods if resources are constrained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源