论文标题

使用多个稀疏度测量值作为暗物质光环的质量曲线的预测宇宙学参数约束

Forecasting cosmological parameter constraints using multiple sparsity measurements as tracers of the mass profiles of dark matter haloes

论文作者

Corasaniti, P. S., Brun, A. M. C. Le, Richardson, T. R. G., Rasera, Y., Ettori, S., Arnaud, M., Pratt, G. W

论文摘要

暗物质光环稀疏性,即封闭两个不同过度的球形光晕质量之间的比率,提供了光晕质量分布的非参数代理,该代理已被证明是对阳离子托管星系群体质量质量的宇宙学烙印的敏感探针。几个过度的质量估计将允许进行多个稀疏度测量,从而有可能检索光晕概况上印记的全部宇宙学信息。在这里,我们研究了多个稀疏度测量对宇宙模型参数推断的影响。为此,我们分析了来自Raygal和M2CSIMS模拟的N体晕圈目录,并评估来自球形过度密度晕块$δ= 200,500,1000 $和$ 2500 $(以关键密度的单位)的六种不同稀疏性之间的相关性。值得注意的是,与不同的光晕质量壳相关的稀疏性与不高度相关。使用从navarro-frenk-white(NFW)最佳拟合曲线估算出的光环质量获得的稀疏度并非如此,它可以人为地将不同的稀疏性相关联。这意味着超出NFW参数化之外的质量概况中还有其他信息,并且可以用多种稀疏性来利用它。特别是,从对合成平均稀疏性数据的可能性分析中,我们表明,宇宙参数的约束在增加稀疏组合数时会显着改善,尽管该约束饱和超过四个稀疏性估计值。我们预测了Chex-Mate群集样本的约束,发现系统的质量偏差误差会轻微影响参数推断,尽管在这个方向上需要更多的研究。

The dark matter halo sparsity, i.e. the ratio between spherical halo masses enclosing two different overdensities, provides a non-parametric proxy of the halo mass distribution which has been shown to be a sensitive probe of the cosmological imprint encoded in the mass profile of haloes hosting galaxy clusters. Mass estimations at several overdensities would allow for multiple sparsity measurements, that can potentially retrieve the entirety of the cosmological information imprinted on the halo profile. Here, we investigate the impact of multiple sparsity measurements on the cosmological model parameter inference. For this purpose, we analyse N-body halo catalogues from the Raygal and M2Csims simulations and evaluate the correlations among six different sparsities from Spherical Overdensity halo masses at $Δ=200,500,1000$ and $2500$ (in units of the critical density). Remarkably, sparsities associated to distinct halo mass shells are not highly correlated. This is not the case for sparsities obtained using halo masses estimated from the Navarro-Frenk-White (NFW) best-fit profile, that artificially correlates different sparsities to order one. This implies that there is additional information in the mass profile beyond the NFW parametrization and that it can be exploited with multiple sparsities. In particular, from a likelihood analysis of synthetic average sparsity data, we show that cosmological parameter constraints significantly improve when increasing the number of sparsity combinations, though the constraints saturate beyond four sparsity estimates. We forecast constraints for the CHEX-MATE cluster sample and find that systematic mass bias errors mildly impact the parameter inference, though more studies are needed in this direction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源