论文标题
$δ$ -TRIBRACKETS和链接同型
$Δ$-Tribrackets and Link Homotopy
论文作者
论文摘要
我们定义了一种niebrzydowski tribracket,我们称为$δ$ -Tribrackets,并表明他们的计数不变性是链接 - 共态的不变性。我们进一步确定了几类三完全的曲折,它们的计数为定向的经典结和链接是微不足道的,包括满足中心涉及条件的垂直曲曲目和满足晚期交换条件的水平曲曲目。我们提供示例,并以未来研究的问题结尾。
We define a type of Niebrzydowski tribracket we call $Δ$-tribrackets and show that their counting invariants are invariants of link-homotopy. We further identify several classes of tribrackets whose counting invariants for oriented classical knots and links are trivial, including vertical tribrackets satisfying the center-involutory condition and horizontal tribrackets satisfying the late-commutativity condition. We provide examples and end with questions for future research.