论文标题
解决自主性障碍问题的极端情况的必要条件
A necessary condition for extremality of solutions to autonomous obstacle problems with general growth
论文作者
论文摘要
让我们考虑自主障碍问题\ begin {equination*} \ min_v \int_Ωf(dv(x))\,dx \ end end {qore*}在特定类别的可允许函数上,我们假设lagrangian可以满足Infinity的无限性和超线性的适当假设。我们的目的是表征存在的解决方案,它是独特的,这要归功于该问题的原始偶尔表达。该证明基于凸分析的经典参数和变化技术的计算。
Let us consider the autonomous obstacle problem \begin{equation*} \min_v \int_ΩF(Dv(x)) \, dx \end{equation*} on a specific class of admissible functions, where we suppose the Lagrangian satisfies proper hypotheses of convexity and superlinearity at infinity. Our aim is to characterize the solution, which exists and it is unique, thanks to a primal-dual formulation of the problem. The proof is based on classical arguments of Convex Analysis and on Calculus of Variations' techniques.