论文标题
高阶标量理论中的黑洞扰动:初始值问题和动态稳定性
Black hole perturbations in higher-order scalar-tensor theories: initial value problem and dynamical stability
论文作者
论文摘要
我们提出了一个在高阶标量理论中黑洞扰动的初始价值问题的物理明智的公式。作为第一个应用,我们研究了简化的高阶标量(DHOST)理论的移位和反射对称亚类围绕隐形Schwarzschild溶液的单极扰动。特别是,我们通过求解二维波方程并分析Vishveshwara的经典散射实验,即高斯波数据包的时间演化来研究单极扰动的时间演变。结果,我们确认,DHOST理论中的隐形Schwarzschild溶液在与黑洞地平线的大小相比具有比波长可比性或短的单极扰动动态稳定。我们还发现,在标准相对论的标准情况下,在晚期的阻尼振荡并未显示出不同的振荡。此外,我们研究了单极扰动的特征曲线以及带有单子头发的静态球形对称溶液。
We propose a physically sensible formulation of initial value problem for black hole perturbations in higher-order scalar-tensor theories. As a first application, we study monopole perturbations around stealth Schwarzschild solutions in a shift- and reflection-symmetric subclass of degenerate higher-order scalar-tensor (DHOST) theories. In particular, we investigate the time evolution of the monopole perturbations by solving a two-dimensional wave equation and analyze the Vishveshwara's classical scattering experiment, i.e., the time evolution of a Gaussian wave packet. As a result, we confirm that stealth Schwarzschild solutions in the DHOST theory are dynamically stable against the monopole perturbations with the wavelength comparable or shorter than the size of the black hole horizon. We also find that the damped oscillations at the late time do not show up unlike the ringdown phase in the standard case of general relativity. Moreover, we investigate the characteristic curves of the monopole perturbations as well as a static spherically symmetric solution with monopole hair.