论文标题

脱衣舞仪:快速图像脱毛的带状变压器

Stripformer: Strip Transformer for Fast Image Deblurring

论文作者

Tsai, Fu-Jen, Peng, Yan-Tsung, Lin, Yen-Yu, Tsai, Chung-Chi, Lin, Chia-Wen

论文摘要

在动态场景中拍摄的图像可能包含不必要的运动模糊,从而大大降低视觉质量。这种模糊会导致短期和远程特定区域的平滑伪像,通常是方向性和不均匀的,很难去除。受到变压器在计算机视觉和图像处理任务的当前成功的启发,我们开发了Stripformer,这是一种基于变压器的体系结构,该体系结构构建了内部和跨条纹代币,以在水平和垂直方向上重新构建图像特征,以捕获具有不同方向的模糊模式。它堆叠了隔离的林内和串间注意层,以显示模糊的幅度。除了检测各种取向和幅度的区域特异性模式外,脱衣舞仪也是一种令牌效率和参数效率高效的变压器模型,要求比Vanilla变压器更少的内存使用和计算成本要少得多,但在不依赖大量训练数据的情况下工作得更好。实验结果表明,在动态场景中,脱衣舞素对最新模型的表现良好。

Images taken in dynamic scenes may contain unwanted motion blur, which significantly degrades visual quality. Such blur causes short- and long-range region-specific smoothing artifacts that are often directional and non-uniform, which is difficult to be removed. Inspired by the current success of transformers on computer vision and image processing tasks, we develop, Stripformer, a transformer-based architecture that constructs intra- and inter-strip tokens to reweight image features in the horizontal and vertical directions to catch blurred patterns with different orientations. It stacks interlaced intra-strip and inter-strip attention layers to reveal blur magnitudes. In addition to detecting region-specific blurred patterns of various orientations and magnitudes, Stripformer is also a token-efficient and parameter-efficient transformer model, demanding much less memory usage and computation cost than the vanilla transformer but works better without relying on tremendous training data. Experimental results show that Stripformer performs favorably against state-of-the-art models in dynamic scene deblurring.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源