论文标题

材料和数据质量评估的相似性

Similarity of materials and data-quality assessment by fingerprinting

论文作者

Kuban, Martin, Gabaj, Šimon, Aggoune, Wahib, Vona, Cecilia, Rigamonti, Santiago, Draxl, Claudia

论文摘要

识别类似的材料,即共享某个特性或功能的材料,需要高质量的互操作数据。它还需要衡量相似性的方法。我们演示了光谱指纹作为描述符与相似性度量的描述符如何用于建立材料数据之间的定量关系,从而实现多种目的。例如,这涉及表现出类似于所选电子特性的材料的识别。可以使用相同的方法来评估可能来自不同来源的数据的不确定性。选定的示例显示了如何量化测得的光谱或方法论和计算参数对计算属性的影响(例如状态或激子光谱的密度)之间的差异。此外,将相同的指纹与聚类方法相结合,可以从发现(UN)预期趋势或模式的情况下探索材料空间。在所有情况下,我们都提供了自动化数据评估结果背后的物理推理。

Identifying similar materials, i.e., those sharing a certain property or feature, requires interoperable data of high quality. It also requires means to measure similarity. We demonstrate how a spectral fingerprint as a descriptor, combined with a similarity metric, can be used for establishing quantitative relationships between materials data, thereby serving multiple purposes. This concerns, for instance, the identification of materials exhibiting electronic properties similar to a chosen one. The same approach can be used for assessing uncertainty in data that potentially come from different sources. Selected examples show how to quantify differences between measured optical spectra or the impact of methodology and computational parameters on calculated properties, like the the density of states or excitonic spectra. Moreover, combining the same fingerprint with a clustering approach allows us to explore materials spaces in view of finding (un)expected trends or patterns. In all cases, we provide physical reasoning behind the findings of the automatized assessment of data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源