论文标题

传输语义分割的域敏捷先验

Domain-Agnostic Prior for Transfer Semantic Segmentation

论文作者

Huo, Xinyue, Xie, Lingxi, Hu, Hengtong, Zhou, Wengang, Li, Houqiang, Tian, Qi

论文摘要

无监督的域适应(UDA)是计算机视觉社区中的重要主题。关键难度在于定义源域和目标域之间的共同属性,以便源域特征可以与目标域语义一致。在本文中,我们提出了一种简单有效的机制,该机制将跨域表示的学习与域 - 不合时宜的先验(DAP)正规化,该学习限制了从源和目标域提取的特征,以与域 - 无知空间保持一致。实际上,这很容易作为一个额外的损失术语实施,需要一些额外的费用。在将综合数据传输到真实数据的标准评估方案中,我们验证了不同类型的DAP的有效性,尤其是从文本嵌入模型借用的,该模型在细分准确性方面表现出了超出最新UDA方法的有利性能。我们的研究表明,UDA从更好的代理中受益匪浅,可能从其他数据方式中受益。

Unsupervised domain adaptation (UDA) is an important topic in the computer vision community. The key difficulty lies in defining a common property between the source and target domains so that the source-domain features can align with the target-domain semantics. In this paper, we present a simple and effective mechanism that regularizes cross-domain representation learning with a domain-agnostic prior (DAP) that constrains the features extracted from source and target domains to align with a domain-agnostic space. In practice, this is easily implemented as an extra loss term that requires a little extra costs. In the standard evaluation protocol of transferring synthesized data to real data, we validate the effectiveness of different types of DAP, especially that borrowed from a text embedding model that shows favorable performance beyond the state-of-the-art UDA approaches in terms of segmentation accuracy. Our research reveals that UDA benefits much from better proxies, possibly from other data modalities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源