论文标题
Ultravista SN调查发现的两年的光学和NIR观察结果30901
Two years of optical and NIR observations of the superluminous supernova UID 30901 discovered by the UltraVISTA SN survey
论文作者
论文摘要
我们介绍了UID 30901的深度光学和近红外光度法,这是一种在Ultravista调查中发现的超浮肿超新星(SLSN)。通过安装在VIRCAM($ YJHK_ {s} $)上的Vircam($ YJHK_ {s} $)上的观测值,该观察台上安装在Vista望远镜上,Blanco望远镜上的Decam($ Griz $)和Subaru Hyper Suprime-Cam(HSC; $ Grizy $)。这些多频段观测值包括+700天,使UID 30901成为迄今为止SLSNE的最佳光学图表之一。在深HST F814W图像中检测到UID 30901的主机星系,其幅度为$ 27.3 \ pm 0.2 $。尽管SN或其主机银河系不存在光谱,但我们根据$ z = 0.37 $的分析进行分析,该分析基于在7 kpc的预计距离处发现的可能的宿主星系的光度红移。计算将黑体拟合到观测值,半径,温度和降压光曲线。我们发现$ 5.4 \ pm 0.34 \ times 10^{43} $ erg s $^{ - 1} $的最大降压光度。观察到超过600天的光曲线中的扁平板,讨论了几个可能的原因。我们发现观察值清楚地利用了SLSN类型I,并且可以将磁盘的损失和磁盘的旋转量和数据与数据进行比较。我们发现,磁体模型具有以下参数非常适合观察值:磁场$ b = 1.4 \ pm 0.3 \ pm 0.3 \ times 10^{14} \ g $,$ p = 6.0 \ pm 0.1 \ ms 0.1 \ ms $和ejecta mass $ m_ $ m_ {ej} = 11.9^= 11.9^= 11.9^{+4.8} $}
We present deep optical and near-infrared photometry of UID 30901, a superluminous supernova (SLSN) discovered during the UltraVISTA survey. The observations were obtained with VIRCAM ($YJHK_{s}$) mounted on the VISTA telescope, DECam ($griz$) on the Blanco telescope, and SUBARU Hyper Suprime-Cam (HSC; $grizy$). These multi-band observations comprise +700 days making UID 30901 one of the best photometrically followed SLSNe to date. The host galaxy of UID 30901 is detected in a deep HST F814W image with an AB magnitude of $27.3 \pm 0.2$. While no spectra exist for the SN or its host galaxy, we perform our analysis assuming $z = 0.37$, based on the photometric redshift of a possible host galaxy found at a projected distance of 7 kpc. Fitting a blackbody to the observations, the radius, temperature, and bolometric light curve are computed. We find a maximum bolometric luminosity of $5.4 \pm 0.34 \times 10^{43}$ erg s$^{-1}$. A flattening in the light curve beyond 600 days is observed and several possible causes are discussed. We find the observations to clearly favour a SLSN type I, and plausible power sources such as the radioactive decay of $^{56}$Ni and the spin-down of a magnetar are compared to the data. We find that the magnetar model yields a good fit to the observations with the following parameters: a magnetic field $B = 1.4 \pm 0.3 \times 10^{14} \ G$, spin period of $P = 6.0 \pm 0.1 \ ms$ and ejecta mass $M_{ej} = 11.9^{+4.8}_{-6.4} M_{\odot}$.