论文标题
许多单位需求买家的购买机制
Buy-Many Mechanisms for Many Unit-Demand Buyers
论文作者
论文摘要
最近的一项研究已经建立了一种新型的Desideratum,用于设计大约收入最佳的多项目机制,即买入的约束。在此限制下,该机制进行的不同分配的价格必须是亚粘贴的,这意味着捆绑包的价格不能超过其包含的单个项目的价格之和。这种自然约束使多个项目机制的设计跨越了良好的不可能结果。我们的工作解决了该文献中的主要开放问题,即将买入限制扩展到多个买方设置并开发近似值。 我们通过前放松的多购买机制提出了一个新的收入基准,该基准捕获了多种不同的方式,将购买量的限制扩展到了多购买者设置。我们的主要结果是,当所有买家对M项目具有单位需求或添加偏好时,具有特定于买方价格的简单顺序定价机制可以实现$ O(\ log M)$ a近似值。这是最好的,因为它直接匹配了单个购买者设置的先前结果,在该设置中,没有简单的机制无法获得更好的近似值。 从技术角度来看,我们做出了两个新颖的贡献。首先,我们为单个买家开发了供应受限的买入近似。其次,我们为单位点购买者开发了一个多维在线争夺计划,该计划可能对机理设计具有独立的兴趣。
A recent line of research has established a novel desideratum for designing approximately-revenue-optimal multi-item mechanisms, namely the buy-many constraint. Under this constraint, prices for different allocations made by the mechanism must be subadditive, implying that the price of a bundle cannot exceed the sum of prices of individual items it contains. This natural constraint has enabled several positive results in multi-item mechanism design bypassing well-established impossibility results. Our work addresses the main open question from this literature of extending the buy-many constraint to multiple buyer settings and developing an approximation. We propose a new revenue benchmark for multi-buyer mechanisms via an ex-ante relaxation that captures several different ways of extending the buy-many constraint to the multi-buyer setting. Our main result is that a simple sequential item pricing mechanism with buyer-specific prices can achieve an $O(\log m)$ approximation to this revenue benchmark when all buyers have unit-demand or additive preferences over m items. This is the best possible as it directly matches the previous results for the single-buyer setting where no simple mechanism can obtain a better approximation. From a technical viewpoint we make two novel contributions. First, we develop a supply-constrained version of buy-many approximation for a single buyer. Second, we develop a multi-dimensional online contention resolution scheme for unit-demand buyers that may be of independent interest in mechanism design.