论文标题

多域失衡数据的域感染知识转移

Domain-Aware Contrastive Knowledge Transfer for Multi-domain Imbalanced Data

论文作者

Ke, Zixuan, Kachuee, Mohammad, Lee, Sungjin

论文摘要

在许多现实世界的机器学习应用程序中,样本属于一组域,例如,对于产品评论,每个评论属于产品类别。在本文中,我们研究了多域不平衡学习(MIL),即不仅在课程中而且在域中也存在不平衡的情况。在MIL环境中,不同的领域表现出不同的模式,并且在转移学习的机会和挑战之间存在不同程度的相似性和分歧,尤其是在面对有限或不足的培训数据时。我们提出了一种新颖的域感染知识转移方法,称为DCMI到(1)确定共享领域知识,以鼓励在相似领域(尤其是从头部域到尾部域)之间的积极转移; (2)隔离域特异性知识,以最大程度地减少不同域的负转移。我们在三个不同的数据集上评估了DCMI的性能,显示了不同的MIL场景的显着改善。

In many real-world machine learning applications, samples belong to a set of domains e.g., for product reviews each review belongs to a product category. In this paper, we study multi-domain imbalanced learning (MIL), the scenario that there is imbalance not only in classes but also in domains. In the MIL setting, different domains exhibit different patterns and there is a varying degree of similarity and divergence among domains posing opportunities and challenges for transfer learning especially when faced with limited or insufficient training data. We propose a novel domain-aware contrastive knowledge transfer method called DCMI to (1) identify the shared domain knowledge to encourage positive transfer among similar domains (in particular from head domains to tail domains); (2) isolate the domain-specific knowledge to minimize the negative transfer from dissimilar domains. We evaluated the performance of DCMI on three different datasets showing significant improvements in different MIL scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源