论文标题

用于粘弹性成像的倍数模型参数的全局优化器的深度Q学习

Deep Q-learning of global optimizer of multiply model parameters for viscoelastic imaging

论文作者

Zhang, Hongmei, Wang, Kai, Zhou, Yan, Momin, Shadab, Yang, Xiaofeng, Fatemi, Mostafa, Insana, Michael F.

论文摘要

目的:对多个模型参数的全局最优值的估计对于成像形成可靠的诊断图像很有价值。考虑到目标函数的非凸度,要避免不同的局部最小值是具有挑战性的。方法:我们首先将乘数参数的全局搜索作为参数空间中的K-D移动,而将更新的参数转换为国家行动决策问题。我们通过通过使Q值最大化的动作更新参数配置来对模型参数(DQMP)方法进行新的深入Q学习方法,以全局优化模型参数,该操作采用了一个深层奖励网络,该操作采用了一个深层奖励网络,旨在从可见的曲线拟合拟合错误和隐藏参数错误中学习全局奖励值。结果:Kelvin-Voigt分数衍生物(KVFD)建模通过粘弹性成像评估了DQMP方法。与其他方法相比,DQMP对参数的成像产生了最小的误差(<2%),对地面真相图像产生了最小的误差。将DQMP应用于生物组织上的粘弹性成像,这表明在诊断应用中进行物理参数具有巨大的可能性。结论:DQMP方法能够实现全局最佳选择,从而在粘弹性成像中得出准确的模型参数估计值。通过仿真成像和超声乳房成像评估DQMP,证明了成像参数的一致性,可靠性以及DQMP强大的全局搜索能力。意义:DQMP方法有望成为多个参数的成像,并且可以推广到许多其他复杂的非凸功能和物理参数成像的全局优化。

Objective: Estimation of the global optima of multiple model parameters is valuable in imaging to form a reliable diagnostic image. Given non convexity of the objective function, it is challenging to avoid from different local minima. Methods: We first formulate the global searching of multiply parameters to be a k-D move in the parametric space, and convert parameters updating to be state-action decision-making problem. We proposed a novel Deep Q-learning of Model Parameters (DQMP) method for global optimization of model parameters by updating the parameter configurations through actions that maximize a Q-value, which employs a Deep Reward Network designed to learn global reward values from both visible curve fitting errors and hidden parameter errors. Results: The DQMP method was evaluated by viscoelastic imaging on soft matter by Kelvin-Voigt fractional derivative (KVFD) modeling. In comparison to other methods, imaging of parameters by DQMP yielded the smallest errors (< 2%) to the ground truth images. DQMP was applied to viscoelastic imaging on biological tissues, which indicated a great potential of imaging on physical parameters in diagnostic applications. Conclusions: DQMP method is able to achieve global optima, yielding accurate model parameter estimates in viscoelastic imaging. Assessment of DQMP by simulation imaging and ultrasound breast imaging demonstrated the consistency, reliability of the imaged parameters, and powerful global searching ability of DQMP. Significance: DQMP method is promising for imaging of multiple parameters, and can be generalized to global optimization for many other complex nonconvex functions and imaging of physical parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源