论文标题

凸随机优化中的动态编程

Dynamic programming in convex stochastic optimization

论文作者

Pennanen, Teemu, Perkkiö, Ari-Pekka

论文摘要

本文研究了Rockafellar和Wets在[30]中引入的一般凸的随机优化问题的动态编程原理。我们通过放松的紧凑性和有限性假设来扩展理论的适用性。在金融数学的背景下,在众所周知的无肢体条件和效用函数的合理渐近弹性条件下,满足了放松的假设。除了金融数学外,我们还获得了线性和非线性随机编程和随机最佳控制的几个新结果。

This paper studies the dynamic programming principle for general convex stochastic optimization problems introduced by Rockafellar and Wets in [30]. We extend the applicability of the theory by relaxing compactness and boundedness assumptions. In the context of financial mathematics, the relaxed assumption are satisfied under the well-known no-arbitrage condition and the reasonable asymptotic elasticity condition of the utility function. Besides financial mathematics, we obtain several new results in linear and nonlinear stochastic programming and stochastic optimal control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源