论文标题

加强与局部和离域状态的广义大象量子步行的纠缠

Enhancing entanglement with the generalized elephant quantum walk from localized and delocalized states

论文作者

Naves, Caio B., Pires, Marcelo A., Soares-Pinto, Diogo O., Queirós, Sílvio M. Duarte

论文摘要

最近,引入了一个名为“大象量子步行(EQW)”的非标准步骤操作员的概括。通过对步骤进行适当的统计分布,可以调节广义的EQW(GEQW),以表现出无数的动态缩放行为,从标准扩散到%,再到超扩散到弹道和高血压扩散。在这项工作中,我们研究了步骤大小的统计数据的影响以及初始状态对硬币纠缠熵的定位。我们的结果表明,GEQW几乎为所有初始硬币状态和硬币操作员生成了最大的纠缠状态,并考虑了最初局部的步行者和Dellocalized的行动者,并采用适当的限制,可以保证相同的条件。与以前的所有通过QW产生高度纠缠状态的协议不同,该模型并非受弹道传播的限制,因此为动态无序的QWS的应用打开了新的前景,作为在可编程的可编程设置中的强大最大纠缠生成器,这些设置的范围从较慢的壁炉到越来越较高的速度到越来越多的庞大的庞然大物。

Recently, it was introduced a generalization of a nonstandard step operator named the elephant quantum walk (EQW). With proper statistical distribution for the steps, that generalized EQW (gEQW) can be tuned to exhibit a myriad of dynamical scaling behavior ranging from standard diffusion to %and superdiffusion to ballistic and hyperballistic spreading. In this work, we study the influence of the statistics of the step size and the delocalization of the initial states on the entanglement entropy of the coin. Our results show that the gEQW generates maximally entangled states for almost all initial coin states and coin operators considering initially localized walkers and for the delocalized ones, taking the proper limit, the same condition is guaranteed. Differently from all the previous protocols that produce highly entangled states via QWs, this model is not upper-bounded by ballistic spreading and hence opens novel prospects for applications of dynamically disordered QWs as a robust maximal entanglement generator in programmable setups that ranges from slower-than-ballistic to faster-than ballistic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源