论文标题

在孔基板上对2D材料的原子形式的连续性建模和等几何分析

Atomistically-informed continuum modeling and isogeometric analysis of 2D materials over holey substrates

论文作者

Choi, Moon-ki, Pasetto, Marco, Shen, Zhaoxiang, Tadmor, Ellad B., Kamensky, David

论文摘要

这项工作开发,离散和验证了二硫化钼(MOS $ _2 $)单层的连续模型与周期性的硝基硅通过Van der Waals(VDW)力相互作用。 MOS $ _2 $ layer被建模为几何非线性Kirchhoff-love shell,VDW力是由Lennard-Jones电位建模的,使用近似值简化了光滑的基板地形。通过比较小型应变和弯曲测试与原子模拟来校准壳模型的材料参数。该模型使用壳结构的等化几何分析(IGA)有效地离散化,并采用伪时间延续方法来最小化。 IgA壳模型针对具有不同底物几何形状的几个基准问题的完全原子量计算进行了验证。连续模拟再现原子模拟预测的挠度,应变和曲线,已知这些模拟强烈影响MOS $ _2 $的电子特性,其偏差远低于广泛使用的反应性经验键和Storninger-Weber-Weber-Weber-Weber-Weber-Weber-Weber-Weber-weber-weber-weeber-neartatomic toments的差异。在某些情况下,与原子的结果一致取决于几何非线性,但是简单的各向同性St. Venant-Kirchhoff模型被发现足以代表物质行为。我们发现,连续模型的IGA离散化的计算成本比原子模拟要低得多,并且期望它将在应变工程应用中实现有效的设计空间探索。通过研究MOS $ _2 $在孔基板上的应变和曲率的依赖性作为孔间距在无法访问原子计算的尺度上的函数来证明这一点。结果表明,在临界孔分离以下的变形模式中发生了意想不到的定性变化。

This work develops, discretizes, and validates a continuum model of a molybdenum disulfide (MoS$_2$) monolayer interacting with a periodic holey silicon nitride substrate via van der Waals (vdW) forces. The MoS$_2$ layer is modeled as a geometrically nonlinear Kirchhoff-Love shell, and vdW forces are modeled by a Lennard-Jones potential, simplified using approximations for a smooth substrate topography. The material parameters of the shell model are calibrated by comparing small-strain tensile and bending tests with atomistic simulations. This model is efficiently discretized using isogeometric analysis (IGA) for the shell structure and a pseudo-time continuation method for energy minimization. The IGA shell model is validated against fully-atomistic calculations for several benchmark problems with different substrate geometries. The continuum simulations reproduce deflections, strains and curvatures predicted by atomistic simulations, which are known to strongly affect the electronic properties of MoS$_2$, with deviations well below the modeling errors suggested by differences between the widely-used reactive empirical bond order and Stillinger-Weber interatomic potentials. Agreement with atomistic results depends on geometric nonlinearity in some cases, but a simple isotropic St. Venant-Kirchhoff model is found to be sufficient to represent material behavior. We find that the IGA discretization of the continuum model has a much lower computational cost than atomistic simulations, and expect that it will enable efficient design space exploration in strain engineering applications. This is demonstrated by studying the dependence of strain and curvature in MoS$_2$ over a holey substrate as a function of the hole spacing on scales inaccessible to atomistic calculations. The results show an unexpected qualitative change in the deformation pattern below a critical hole separation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源