论文标题
运动策略使用复杂环境的体积表示的遍历性学习
Locomotion Policy Guided Traversability Learning using Volumetric Representations of Complex Environments
论文作者
论文摘要
尽管机器人运动取得了进展,但在未知环境中的自主导航仍然是一个开放的问题。理想情况下,导航系统在不确定性下在安全范围内运行时,利用机器人的运动功能的全部潜力。机器人必须感知和分析周围地形的遍历性,这取决于硬件,运动控制和地形特性。它可能包含有关穿越地形所需的风险,能量或时间消耗的信息。为了避免手工制作的遍历成本功能,我们建议通过使用物理模拟器在随机生成的地形上模拟遍历,以收集有关机器人和运动策略的遍历性信息。在现实中使用的相同的运动策略并行控制了数千个机器人,以获得57年的现实运动体验。对于在Real机器人上的部署,培训了一个稀疏的卷积网络,以预测模拟的遍历性成本,该成本是针对已部署的运动策略量身定制的,它是从环境的完全几何表示,以3D voxel-cupupancy图的形式进行。该表示避免了对常用的高程图的需求,在存在障碍物和多层或低天花板方案的情况下,这些图形图可能容易出错。在各种室内和自然环境中,为腿部机器人Anymal的路径计划证明了拟议的遍历性预测网络的有效性。
Despite the progress in legged robotic locomotion, autonomous navigation in unknown environments remains an open problem. Ideally, the navigation system utilizes the full potential of the robots' locomotion capabilities while operating within safety limits under uncertainty. The robot must sense and analyze the traversability of the surrounding terrain, which depends on the hardware, locomotion control, and terrain properties. It may contain information about the risk, energy, or time consumption needed to traverse the terrain. To avoid hand-crafted traversability cost functions we propose to collect traversability information about the robot and locomotion policy by simulating the traversal over randomly generated terrains using a physics simulator. Thousand of robots are simulated in parallel controlled by the same locomotion policy used in reality to acquire 57 years of real-world locomotion experience equivalent. For deployment on the real robot, a sparse convolutional network is trained to predict the simulated traversability cost, which is tailored to the deployed locomotion policy, from an entirely geometric representation of the environment in the form of a 3D voxel-occupancy map. This representation avoids the need for commonly used elevation maps, which are error-prone in the presence of overhanging obstacles and multi-floor or low-ceiling scenarios. The effectiveness of the proposed traversability prediction network is demonstrated for path planning for the legged robot ANYmal in various indoor and natural environments.