论文标题

实施非专家的自动学习系统

Implementation of an Automated Learning System for Non-experts

论文作者

Huang, Phoenix X., Zhao, Zhiwei, Liu, Chao, Liu, Jingyi, Hu, Wenze, Wang, Xiaoyu

论文摘要

非专家的自动化机器学习系统对于行业对自己的应用采用人工智能可能至关重要。本文详细介绍了称为YMIR的自动化机器学习系统的工程系统实现,该系统完全依靠图形接口与用户进行交互。将培训/验证数据导入系统后,没有AI知识的用户可以通过单击按钮来标记数据,训练模型,执行数据挖掘和评估。描述的论文:1)通过Docker容器开放模型培训和推断。 2)实施任务和资源管理。 3)标签软件的集成。 4)通过重建协作开发范式实施HCI(人类计算机互动)。我们还提供有关系统培训模型的后续案例研究。我们希望本文能够从行业应用的角度促进我们自动化的机器学习社区的繁荣。该系统的代码已经发布到GitHub(https://github.com/industryessentials/ymir)。

Automated machine learning systems for non-experts could be critical for industries to adopt artificial intelligence to their own applications. This paper detailed the engineering system implementation of an automated machine learning system called YMIR, which completely relies on graphical interface to interact with users. After importing training/validation data into the system, a user without AI knowledge can label the data, train models, perform data mining and evaluation by simply clicking buttons. The paper described: 1) Open implementation of model training and inference through docker containers. 2) Implementation of task and resource management. 3) Integration of Labeling software. 4) Implementation of HCI (Human Computer Interaction) with a rebuilt collaborative development paradigm. We also provide subsequent case study on training models with the system. We hope this paper can facilitate the prosperity of our automated machine learning community from industry application perspective. The code of the system has already been released to GitHub (https://github.com/industryessentials/ymir).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源