论文标题
大规模结构中最分散气体的吸收研究
Absorption studies of the most diffuse gas in the Large Scale Structure
论文作者
论文摘要
随着宇宙的发展,它会发展出物质的丝状结构网。这个宇宙网中充满了气体,其中最漫射的气体位于星际区域。在低红移时,气体主要是热热的,其最佳示踪剂之一是在视线中吸收到背景类星体中。在本章中,我们介绍了形成热热层间培养基(WIM)的理论背景,并介绍了宇宙学水力学模拟的想法。我们讨论了使用X射线吸收线以高分辨率和高信噪光谱来检测异想天开的可行性。我们对观察技术进行了详细讨论,包括使用X射线线的异想天开的电离平衡,可观察的线,生长曲线和诊断。我们介绍了目前通过板载板和XMM-Newton天文台来检测异想天开的努力。我们讨论了文献中报道的异想天开的临界性,其中强大的检测可能来自中间星系或组内培养基的环境培养基,而不是真正弥漫性气体中的气体间培养基。在低红移大规模结构中最散布气体的安全检测可能需要等待下一代X射线望远镜。我们以讨论携带分散和非分散光谱仪的未来任务的讨论结束了我们的章节。我们介绍了线路可检测性以及可以通过未来任务检测到的异想天开的系统数量。这些将定义我们考虑缺失的低红移重子的能力,并了解宇宙在其一半寿命中的演变。
As the Universe evolves, it develops a web of filamentary structure of matter. This cosmic web is filled with gas, with the most diffuse gas lying in the intergalactic regions. At low redshift, the gas is predominantly warm-hot, and one of its best tracers is X-ray absorption in sightlines to background quasars. In this Chapter, we present the theoretical background for the formation of the warm-hot intergalactic medium (WHIM) and present the physical properties of the WHIM from cosmological hydro-dynamical simulations. We discuss the feasibility of detecting the WHIM with X-ray absorption lines, with high-resolution and high signal-to-noise spectra. We present detailed discussion of observing techniques, including the WHIM ionization balance, observable lines, the curve of growth, and the diagnostics using the X-ray lines. We present the current efforts of detecting the WHIM with gratings on-board Chandra and XMM-Newton observatories. We discuss the criticality of WHIM detections reported in literature, where robust detections are likely from the circumgalactic medium of intervening galaxies, or intra-group medium, rather than truly diffuse gas in the intergalactic medium. Secure detections of the most diffuse gas in the low redshift large scale structure may have to await next generation of X-ray telescopes. We end our Chapter with the discussion of future missions carrying dispersive and non-dispersive spectrometers. We present figure-of-merit parameters for line detectibility as well as for the number of WHIM systems that can be detected with future missions. These will define our ability to account for the missing low-redshift baryons and to understand the evolution of the Universe over half of its life.