论文标题

strentbev:在空间和时间上伸展未来实例预测

StretchBEV: Stretching Future Instance Prediction Spatially and Temporally

论文作者

Akan, Adil Kaan, Güney, Fatma

论文摘要

在自动驾驶中,在车辆周围所有代理的位置和运动方面预测未来是计划的关键要求。最近,通过将多个相机感知的丰富感觉信息融合到紧凑的鸟类视图表示以执行预测的情况下,已经出现了一种新的感知和预测的联合表述。但是,由于多个合理的预测,未来预测的质量会随着时间的流逝而变化,同时延长了更长的时间范围。在这项工作中,我们通过随机时间模型解决了未来预测中的这种固有的不确定性。我们的模型通过在每个时间步骤中通过随机残差更新来学习潜在空间中的时间动态。通过在每个时间步骤中从学习的分布中取样,我们获得了与以前的工作相比,这些预测更加准确,尤其是在现场的空间上扩展两个区域,并在更长的时间范围内延伸。尽管每个时间步骤进行了单独的处理,但我们的模型仍然通过解耦动态学习和未来预测的产生而有效。

In self-driving, predicting future in terms of location and motion of all the agents around the vehicle is a crucial requirement for planning. Recently, a new joint formulation of perception and prediction has emerged by fusing rich sensory information perceived from multiple cameras into a compact bird's-eye view representation to perform prediction. However, the quality of future predictions degrades over time while extending to longer time horizons due to multiple plausible predictions. In this work, we address this inherent uncertainty in future predictions with a stochastic temporal model. Our model learns temporal dynamics in a latent space through stochastic residual updates at each time step. By sampling from a learned distribution at each time step, we obtain more diverse future predictions that are also more accurate compared to previous work, especially stretching both spatially further regions in the scene and temporally over longer time horizons. Despite separate processing of each time step, our model is still efficient through decoupling of the learning of dynamics and the generation of future predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源