论文标题
互动样式转移:一切都是您的调色板
Interactive Style Transfer: All is Your Palette
论文作者
论文摘要
神经风格转移(NST)可以通过将参考样式转移到内容图像来创造令人印象深刻的艺术品。当前的图像到图像NST方法缺乏细粒度的控制,通常通过艺术编辑要求。为了减轻这种限制,我们提出了类似图形的交互式传输(IST)方法,用户可以通过该方法进行交互创建和谐风格的映像。我们的IST方法可以用作刷子,从任何地方浸入样式,然后将其绘制到目标内容图像的任何区域。为了确定动作范围,我们制定了流体模拟算法,该算法将样式作为刷子相互作用位置的颜料,并根据相似性图的样式或内容图像扩散。我们的IST方法扩展了NST的创意维度。通过浸入和绘画,即使使用一种样式图像也可以产生数千件引人注目的作品。演示视频可在补充文件或http://mmcheng.net/ist中获得。
Neural style transfer (NST) can create impressive artworks by transferring reference style to content image. Current image-to-image NST methods are short of fine-grained controls, which are often demanded by artistic editing. To mitigate this limitation, we propose a drawing-like interactive style transfer (IST) method, by which users can interactively create a harmonious-style image. Our IST method can serve as a brush, dip style from anywhere, and then paint to any region of the target content image. To determine the action scope, we formulate a fluid simulation algorithm, which takes styles as pigments around the position of brush interaction, and diffusion in style or content images according to the similarity maps. Our IST method expands the creative dimension of NST. By dipping and painting, even employing one style image can produce thousands of eye-catching works. The demo video is available in supplementary files or in http://mmcheng.net/ist.