论文标题
关于本福德法律的乘法功能
On Benford's Law for multiplicative functions
论文作者
论文摘要
我们提供了一个标准来确定实际乘法函数是否是强大的本福德序列。该标准意味着$ k $ divisor函数,其中$ k \ neq 10^j $,以及诸如Ramanujan tau功能之类的Newforms的Hecke Eigenvalues,都是强大的Benford。此外,我们从以下标准中得出,收集并非强大的本福德在倍增乘法下形成了一个群体。与较早的工作相反,我们的方法基于Halász的定理。
We provide a criterion to determine whether a real multiplicative function is a strong Benford sequence. The criterion implies that the $k$-divisor functions, where $k \neq 10^j$, and Hecke eigenvalues of newforms, such as Ramanujan tau function, are strong Benford. Moreover, we deduce from the criterion that the collection of multiplicative functions which are not strong Benford forms a group under pointwise multiplication. In contrast to earlier work, our approach is based on Halász's Theorem.