论文标题
从合成环境中学习致密的对应关系
Learning Dense Correspondence from Synthetic Environments
论文作者
论文摘要
从单个图像中估算人形和姿势是一项艰巨的任务。将确定的人形映射到3D人类模型上是一个更困难的问题。现有方法将实际2D图像中的人类像素手动标记到3D表面上,该表面容易出现人为错误,并且可用的带注释数据的稀疏性通常会导致次优的结果。我们建议使用自动生成的合成数据训练2D-3D人类映射算法来解决数据稀缺问题,这些数据已知精确和密集的2d-3d对应关系。使用合成环境的这种学习策略具有对现实数据的高概括潜力。使用不同的相机参数变化,背景和照明设置,我们创建了构成更广泛分布的精确地面真相数据。我们使用可可数据集和验证框架评估了在合成过程中训练的模型的性能。结果表明,在合成数据上训练2D-3D映射网络模型是使用实际数据的可行替代方法。
Estimation of human shape and pose from a single image is a challenging task. It is an even more difficult problem to map the identified human shape onto a 3D human model. Existing methods map manually labelled human pixels in real 2D images onto the 3D surface, which is prone to human error, and the sparsity of available annotated data often leads to sub-optimal results. We propose to solve the problem of data scarcity by training 2D-3D human mapping algorithms using automatically generated synthetic data for which exact and dense 2D-3D correspondence is known. Such a learning strategy using synthetic environments has a high generalisation potential towards real-world data. Using different camera parameter variations, background and lighting settings, we created precise ground truth data that constitutes a wider distribution. We evaluate the performance of models trained on synthetic using the COCO dataset and validation framework. Results show that training 2D-3D mapping network models on synthetic data is a viable alternative to using real data.