论文标题
使用残留的注意U-NET从远镜明亮场传输光学显微镜图像进行细胞分割:关于HELA线的案例研究
Cell segmentation from telecentric bright-field transmitted light microscopy images using a Residual Attention U-Net: a case study on HeLa line
论文作者
论文摘要
由于图像的复杂性和活细胞的时间变化,来自明亮场光显微镜图像的活细胞分割具有挑战性。最近开发的深度学习(DL)方法由于其成功和有希望的结果而在医学和显微镜图像分割任务中变得很流行。本文的主要目的是开发一种基于U-NET的深度学习方法,以在明亮场传输光学显微镜中分割HeLa系的活细胞。为了找到适合我们数据集的最合适的体系结构,提出了剩余的注意U-net,并将其与注意力和简单的U-NET体系结构进行了比较。 注意机制突出了显着的特征,并抑制了无关图像区域的激活。残留机制克服了消失的梯度问题。对于简单,注意力和剩余的关注,我们的数据集的平均得分分别达到0.9505、0.9524和0.9530。通过将残留和注意机制应用在一起,在平均值和骰子指标中实现了最准确的语义分割结果。应用的分水岭方法适用于这种最佳的(残留关注)语义分割结果,从而通过每个单元格的特定信息进行了分割。
Living cell segmentation from bright-field light microscopy images is challenging due to the image complexity and temporal changes in the living cells. Recently developed deep learning (DL)-based methods became popular in medical and microscopy image segmentation tasks due to their success and promising outcomes. The main objective of this paper is to develop a deep learning, U-Net-based method to segment the living cells of the HeLa line in bright-field transmitted light microscopy. To find the most suitable architecture for our datasets, a residual attention U-Net was proposed and compared with an attention and a simple U-Net architecture. The attention mechanism highlights the remarkable features and suppresses activations in the irrelevant image regions. The residual mechanism overcomes with vanishing gradient problem. The Mean-IoU score for our datasets reaches 0.9505, 0.9524, and 0.9530 for the simple, attention, and residual attention U-Net, respectively. The most accurate semantic segmentation results was achieved in the Mean-IoU and Dice metrics by applying the residual and attention mechanisms together. The watershed method applied to this best -- Residual Attention -- semantic segmentation result gave the segmentation with the specific information for each cell.