论文标题
布朗运动在椭圆形上的偏斜产物分解
Skew-product decomposition of Brownian motion on ellipsoid
论文作者
论文摘要
在本文中,我们在欧几里得空间中,在尺寸$ n $的椭圆形$ n+1 $的椭圆形上获得了布朗尼运动的偏斜分解。我们仅考虑这样的椭圆形,其限制对第一个$ n $尺寸是一个球体,其最后一个坐标取决于变量参数。我们证明,在适当的转换之后,这种布朗运动对最后一个坐标的投影是具有非典型选择系数的赖特 - 法派扩散过程。
In this article we obtain a skew-product decomposition of a Brownian motion on an ellipsoid of dimension $n$ in a Euclidean space of dimension $n+1$. We only consider such ellipsoid whose restriction to first $n$ dimensions is a sphere and its last coordinate depends on a variable parameter. We prove that the projection of this Brownian motion on to the last coordinate is, after a suitable transformation, a Wright-Fisher diffusion process with atypical selection coefficient.