论文标题

优化航空公司收入管理中的收入最大化和需求学习

Optimizing Revenue Maximization and Demand Learning in Airline Revenue Management

论文作者

Pinheiro, Giovanni Gatti, Defoin-Platel, Michael, Regin, Jean-Charles

论文摘要

正确估计价格如何响应价格对于愿意优化其定价政策的航空公司至关重要。在某些情况下,这些政策虽然旨在最大程度地提高短期收入,但价格差异太小,这可能会降低未来需求预测的总体质量。这个问题被称为学习问题的收入,并不是航空公司独有的,并且近年来已经对学术界和行业进行了调查。文献中提出的最有前途的方法之一将收入最大化和需求模型质量结合到一个单一的目标函数中。该方法在模拟研究和现实生活基准中表现出了巨大的成功。然而,这项工作需要适应航空公司收入管理(RM)中产生的某些限制,例如需要同时控制几支腿的几次主动飞行的价格。在本文中,我们将此方法调整为航空公司RM,同时假设容量不受限制。然后,我们表明我们的新算法有效地执行了价格实验,以便在长期范围内产生更多的收入,而不是试图最大化收入的经典方法。

Correctly estimating how demand respond to prices is fundamental for airlines willing to optimize their pricing policy. Under some conditions, these policies, while aiming at maximizing short term revenue, can present too little price variation which may decrease the overall quality of future demand forecasting. This problem, known as earning while learning problem, is not exclusive to airlines, and it has been investigated by academia and industry in recent years. One of the most promising methods presented in literature combines the revenue maximization and the demand model quality into one single objective function. This method has shown great success in simulation studies and real life benchmarks. Nevertheless, this work needs to be adapted to certain constraints that arise in the airline revenue management (RM), such as the need to control the prices of several active flights of a leg simultaneously. In this paper, we adjust this method to airline RM while assuming unconstrained capacity. Then, we show that our new algorithm efficiently performs price experimentation in order to generate more revenue over long horizons than classical methods that seek to maximize revenue only.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源