论文标题

使用几何学嵌入深度完成深度

Depth Completion using Geometry-Aware Embedding

论文作者

Du, Wenchao, Chen, Hu, Yang, Hongyu, Zhang, Yi

论文摘要

但是,稀疏激光雷达的内部空间几何约束对深度完成是有益的,但是尚未得到很好的探索。本文提出了一种学习几何感知嵌入的有效方法,该方法从3D点(例如场景布局,对象的大小和形状)编码局部和全局几何结构信息,以指导密集的深度估计。具体而言,我们以灵活有效的方式利用了动态图表示从不规则点云中模拟广义的几何关系。此外,我们将此嵌入和对应的RGB外观信息结合,以推断场景的缺失深度,并保存结构良好的细节。我们方法的关键是将隐式3D几何表示形式集成到2D学习体系结构中,从而导致性能和效率之间的更折衷。广泛的实验表明,所提出的方法的表现优于先前的作品,并且可以在其过度平滑的区域中重建具有清晰界限的精细深度。消融研究对我们的方法提供了更多的见解,该方法可以通过简单的设计获得显着增长,同时具有更好的概括能力和稳定性。该代码可在https://github.com/wenchao-du/gaenet上找到。

Exploiting internal spatial geometric constraints of sparse LiDARs is beneficial to depth completion, however, has been not explored well. This paper proposes an efficient method to learn geometry-aware embedding, which encodes the local and global geometric structure information from 3D points, e.g., scene layout, object's sizes and shapes, to guide dense depth estimation. Specifically, we utilize the dynamic graph representation to model generalized geometric relationship from irregular point clouds in a flexible and efficient manner. Further, we joint this embedding and corresponded RGB appearance information to infer missing depths of the scene with well structure-preserved details. The key to our method is to integrate implicit 3D geometric representation into a 2D learning architecture, which leads to a better trade-off between the performance and efficiency. Extensive experiments demonstrate that the proposed method outperforms previous works and could reconstruct fine depths with crisp boundaries in regions that are over-smoothed by them. The ablation study gives more insights into our method that could achieve significant gains with a simple design, while having better generalization capability and stability. The code is available at https://github.com/Wenchao-Du/GAENet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源