论文标题
单调包容问题的广义近端点算法的线性收敛
Linear Convergence of Generalized Proximal Point Algorithms for Monotone Inclusion Problems
论文作者
论文摘要
我们专注于用于解决单调包容问题的广义近端算法的线性收敛。在假设相关的单调算子是在测量的次规则上或单调算子的倒数是Lipschitz的连续的,我们为广义近端算法提供了Q线性和R线性收敛的结果。这项工作的评论中介绍了我们的结果与文献中相关结果之间的比较。
We focus on the linear convergence of generalized proximal point algorithms for solving monotone inclusion problems. Under the assumption that the associated monotone operator is metrically subregular or that the inverse of the monotone operator is Lipschitz continuous, we provide Q-linear and R-linear convergence results on generalized proximal point algorithms. Comparisons between our results and related ones in the literature are presented in remarks of this work.