论文标题
一种幼稚的方法,可以在stylegan2潜在空间中发现方向
A naive method to discover directions in the StyleGAN2 latent space
论文作者
论文摘要
几个研究小组表明,近年来生成的对抗网络(GAN)可以生成照片现实的图像。使用gans在潜在代码和照片真实图像之间创建地图。此过程也可以逆转:给定照片作为输入,可以获得相应的潜在代码。在本文中,我们将展示如何轻松利用反转过程来解释潜在空间并控制stylegan2的输出,这是一种能够生成照片真实面孔的gan架构。从生物学的角度来看,鼻子大小等面部特征取决于重要的遗传因素,我们探索了与这种生物学特征相对应的潜在空间,包括男性气质和眼睛。我们通过将提出的方法应用于Celeba-HQ数据库中提取的一组照片来显示获得的结果。我们通过利用两个地标协议来量化其中一些措施,并通过统计分析评估它们的鲁棒性。最后,我们将这些度量与用于沿着这些可解释的方向扰动潜在空间的输入参数相关联。我们的结果有助于建立在取证中使用此类gan建筑的基础,以产生满足某些生物学属性的光真实面孔。
Several research groups have shown that Generative Adversarial Networks (GANs) can generate photo-realistic images in recent years. Using the GANs, a map is created between a latent code and a photo-realistic image. This process can also be reversed: given a photo as input, it is possible to obtain the corresponding latent code. In this paper, we will show how the inversion process can be easily exploited to interpret the latent space and control the output of StyleGAN2, a GAN architecture capable of generating photo-realistic faces. From a biological perspective, facial features such as nose size depend on important genetic factors, and we explore the latent spaces that correspond to such biological features, including masculinity and eye colour. We show the results obtained by applying the proposed method to a set of photos extracted from the CelebA-HQ database. We quantify some of these measures by utilizing two landmarking protocols, and evaluate their robustness through statistical analysis. Finally we correlate these measures with the input parameters used to perturb the latent spaces along those interpretable directions. Our results contribute towards building the groundwork of using such GAN architecture in forensics to generate photo-realistic faces that satisfy certain biological attributes.