论文标题

无选择的DE VRIE二元性

Choice-Free de Vries Duality

论文作者

Massas, Guillaume

论文摘要

de vries二重性将布尔代数和石材空间之间的石材二元性推广到De Vries代数之间的二元性(完全布尔的代数,配备了满足某些公理的下属关系)和紧凑的Hausdorff空间。这种二元性允许对基于区域的空间理论进行代数方法,与无点拓扑不同。本文以Bezhanishvili和Holliday开发的最新无选择的Stone二重性为基础,在De Vries代数与De Vries Space类别之间建立了无选择的二元性。我们还研究了与越野函数在紧凑的Hausdorff空间类别以及无点拓扑中紧凑的常规帧类别的类别上的连接,我们为Bezhanishvili等人提供了一种替代性的,无选择的拓扑性语义,以实现对称性的严格含义。

De Vries Duality generalizes Stone duality between Boolean algebras and Stone spaces to a duality between de Vries algebras (complete Boolean algebras equipped with a subordination relation satisfying some axioms) and compact Hausdorff spaces. This duality allows for an algebraic approach to region-based theories of space that differs from point-free topology. Building on the recent choice-free version of Stone duality developed by Bezhanishvili and Holliday, this paper establishes a choice-free duality between de Vries algebras and a category of de Vries spaces. We also investigate connections with the Vietoris functor on the category of compact Hausdorff spaces and with the category of compact regular frames in point-free topology, and we provide an alternative, choice-free topological semantics for the Symmetric Strict Implication Calculus of Bezhanishvili et al.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源