论文标题
美元
$(\mathcal{F},\mathcal{A})$-Gorenstein flat homological dimensions
论文作者
论文摘要
在本文中,我们开发了$(\ MATHCAL {l},\ MATHCAL {a})$ - GORENSTEIN FLAT $ R $ -MODULES $ \ MATHCAL {GF} _ {(\ MATHCAL {F}(f}(r),\ Mathcal {a a} $ quass)的同源属性。其中$ \ Mathcal {a} \ subseteq \ mathrm {mod}(r^{op})$有时对应于双重对应$(\ Mathcal {l},\ Mathcal {a})$。我们研究了$ \ Mathcal {gf} _ {(\ Mathcal {f}(r),\ Mathcal {a})$带来的薄弱全球和有限维度$ \ mathrm {mod}(r^{op})\ times \ times \ mathrm {mod}(r)$ by class $ \ mathcal {gf} _ {(\ mathcal {f}(r^{op})(r^{op}) \ Mathcal {gf} _ {(\ Mathcal {f}(r),\ Mathcal {a})} $。当双重性对为$(\ Mathcal {f}(r),\ Mathcal {fp} Inj(r^{op}))$,我们在ding-chen环上恢复了G. Yang的结果,我们看到这是$(\ Mathrm {lev}(lev}(lev}(r),\ Mathrm^$ rm rm^ac})的新事物。
In this paper we develop the homological properties of the $(\mathcal{L}, \mathcal{A})$-Gorenstein flat $R$-modules $\mathcal{GF}_{(\mathcal{F}(R), \mathcal{A})}$ proposed by Gillespie. Where the class $\mathcal{A} \subseteq \mathrm{Mod} (R^{op})$ sometimes corresponds to a duality pair $(\mathcal{L}, \mathcal{A})$. We study the weak global and finitistic dimensions that comes with $\mathcal{GF}_{(\mathcal{F}(R), \mathcal{A})}$ and show that over a $(\mathcal{L}, \mathcal{A})$-Gorenstein ring, the functor $-\otimes _R -$ is left balanced over $\mathrm{Mod} (R^{op}) \times \mathrm{Mod} (R)$ by the classes $\mathcal{GF}_{(\mathcal{F}(R^{op}), \mathcal{A})} \times \mathcal{GF}_{(\mathcal{F}(R), \mathcal{A})}$. When the duality pair is $(\mathcal{F} (R), \mathcal{FP}Inj (R^{op}))$ we recover the G. Yang's result over a Ding-Chen ring, and we see that is new for $(\mathrm{Lev} (R), \mathrm{AC} (R^{op}))$ among others.