论文标题
全息路径积分的成本
Cost of holographic path integrals
论文作者
论文摘要
我们考虑有关全息路径积分成本的建议。有限径向截止表面内的引力路径积分具有$ t \ bar t $变形全息CFT中的路径积分的精确图。在尼尔森的几何配方成本中,是运算符公制空间中不必要的对路径的长度。我们的成本提案与全息状态的复杂性提案不同,因为(1)边界双重二的是成本,可以“优化”以“优化”对状态复杂性的数量,(2)一组提案很大:所有批量分组上所有批量尺寸上的所有功能都可以满足成本的所有构建特性,并且通过构建构建uv-finite。准备给定状态的最佳路径积分是,当发现路径积分被发现时,降低到CV和CV2.0复杂性的成本提案降低到CV和CV2.0复杂性,而没有找到基于重力行动的有限成本建议。与我们对基于重力作用的提案的分析有关,我们研究具有特定值的恒定固有曲率的散装性曲面,并在存在圆锥形奇异性的情况下具有有效的高斯 - 骨网定理的洛伦兹版本。
We consider proposals for the cost of holographic path integrals. Gravitational path integrals within finite radial cutoff surfaces have a precise map to path integrals in $T\bar T$ deformed holographic CFTs. In Nielsen's geometric formulation cost is the length of a not-necessarily-geodesic path in a metric space of operators. Our cost proposals differ from holographic state complexity proposals in that (1) the boundary dual is cost, a quantity that can be `optimised' to state complexity, (2) the set of proposals is large: all functions on all bulk subregions of any co-dimension which satisfy the physical properties of cost, and (3) the proposals are by construction UV-finite. The optimal path integral that prepares a given state is that with minimal cost, and cost proposals which reduce to the CV and CV2.0 complexity conjectures when the path integral is optimised are found, while bounded cost proposals based on gravitational action are not found. Related to our analysis of gravitational action-based proposals, we study bulk hypersurfaces with a constant intrinsic curvature of a specific value and give a Lorentzian version of the Gauss-Bonnet theorem valid in the presence of conical singularities.