论文标题

握把:无梯度,基于编辑的指令搜索,以提示大型语言模型

GrIPS: Gradient-free, Edit-based Instruction Search for Prompting Large Language Models

论文作者

Prasad, Archiki, Hase, Peter, Zhou, Xiang, Bansal, Mohit

论文摘要

在提示中提供自然语言说明是一个有用的新范式,用于在零弹奏设置中改善大型语言模型的任务性能。最近的工作旨在通过手动重写或基于梯度的调整来改善此类提示。但是,手动重写是耗时的,需要主观的解释,而基于梯度的调整对于大型模型来说可能是极其计算的要求,对于基于API的模型来说可能是不可行的。在这项工作中,我们介绍了一种无坡度的教学及时搜索(GRIPS),这是一种基于无梯度的,基于编辑的搜索方法,用于改进大型语言模型的任务说明。 Grips收集为人类设计的说明,并自动返回改进的,编辑的提示,同时允许基于API的调整。借助指令设备模型,Grips从自然说明数据集中的八个分类任务上提高了高达4.30个百分点(对OPT,BLOOM和FLAN-T5的改进)。我们看到了仅教学的提示和指令 + K-shot示例提示的改进。值得注意的是,在控制可用的计算和数据预算时,抓地力优于手动重写和纯粹基于示例的提示。此外,GRIP的性能与精选的基于梯度的调谐方法相当。从定性上讲,我们表明我们的编辑可以简化说明,有时使它们不一致,但仍提高了准确性。我们的代码可在以下网址找到:https://github.com/archiki/grips

Providing natural language instructions in prompts is a useful new paradigm for improving task performance of large language models in a zero-shot setting. Recent work has aimed to improve such prompts via manual rewriting or gradient-based tuning. However, manual rewriting is time-consuming and requires subjective interpretation, while gradient-based tuning can be extremely computationally demanding for large models and may not be feasible for API-based models. In this work, we introduce Gradient-free Instructional Prompt Search (GrIPS), a gradient-free, edit-based search approach for improving task instructions for large language models. GrIPS takes in instructions designed for humans and automatically returns an improved, edited prompt, while allowing for API-based tuning. With InstructGPT models, GrIPS improves the average task performance by up to 4.30 percentage points on eight classification tasks from the Natural Instructions dataset (with similar improvements for OPT, BLOOM, and FLAN-T5). We see improvements for both instruction-only prompts and instruction + k-shot examples prompts. Notably, GrIPS outperforms manual rewriting and purely example-based prompts while controlling for the available compute and data budget. Further, performance of GrIPS is comparable to select gradient-based tuning approaches. Qualitatively, we show our edits can simplify instructions and at times make them incoherent but nonetheless improve accuracy. Our code is available at: https://github.com/archiki/GrIPS

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源