论文标题

广义量子群集代数:月桂现象和上限

Generalized quantum cluster algebras: the Laurent phenomenon and upper bounds

论文作者

Bai, Liqian, Chen, Xueqing, Ding, Ming, Xu, Fan

论文摘要

[1]中引入的广义量子群集代数是几何类型的普遍群集代数的量子变形。在本文中,我们证明了桂树现象在这些广义的量子群集代数中。我们还表明,在“占用”条件下,上限与相应的广义量子上群集代数相吻合。

Generalized quantum cluster algebras introduced in [1] are quantum deformation of generalized cluster algebras of geometric types. In this paper, we prove that the Laurent phenomenon holds in these generalized quantum cluster algebras. We also show that upper bounds coincide with the corresponding generalized quantum upper cluster algebras under the "coprimality" condition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源