论文标题

点云的蒙面自动编码器自我监督学习

Masked Autoencoders for Point Cloud Self-supervised Learning

论文作者

Pang, Yatian, Wang, Wenxiao, Tay, Francis E. H., Liu, Wei, Tian, Yonghong, Yuan, Li

论文摘要

作为一个有前途的自我监督学习计划,蒙面的自动编码具有明显的先进的自然语言处理和计算机视觉。受此启发的启发,我们提出了一个整洁的蒙版自动编码器方案,用于点云自学学习,以应对点云的属性所带来的挑战,包括位置信息的泄漏和信息密度不均匀。具体而言,我们将输入点云分为不规则的点斑块,并以高比例随机掩盖它们。然后,基于标准变压器的自动编码器,具有不对称的设计和不对称的面具令牌操作,从未掩盖的点贴片中学习了高级潜在特征,旨在重建蒙版的点贴片。广泛的实验表明,我们的方法在预训练期间是有效的,并且在各种下游任务上都很好地概括了。具体而言,我们的预训练模型在ScanObjectnn上实现了85.18%的精度,在ModelNet40上的精度为94.04%,表现优于所有其他自我监督的学习方法。我们通过我们的方案展示了一个完全基于标准变压器的简单体系结构,可以超过监督学习的专用变压器模型。我们的方法还将最新的准确性提高了1.5%-2.3%,而几个弹药的对象分类。此外,我们的作品激发了将语言和图像统一体系结构应用于点云的可行性。

As a promising scheme of self-supervised learning, masked autoencoding has significantly advanced natural language processing and computer vision. Inspired by this, we propose a neat scheme of masked autoencoders for point cloud self-supervised learning, addressing the challenges posed by point cloud's properties, including leakage of location information and uneven information density. Concretely, we divide the input point cloud into irregular point patches and randomly mask them at a high ratio. Then, a standard Transformer based autoencoder, with an asymmetric design and a shifting mask tokens operation, learns high-level latent features from unmasked point patches, aiming to reconstruct the masked point patches. Extensive experiments show that our approach is efficient during pre-training and generalizes well on various downstream tasks. Specifically, our pre-trained models achieve 85.18% accuracy on ScanObjectNN and 94.04% accuracy on ModelNet40, outperforming all the other self-supervised learning methods. We show with our scheme, a simple architecture entirely based on standard Transformers can surpass dedicated Transformer models from supervised learning. Our approach also advances state-of-the-art accuracies by 1.5%-2.3% in the few-shot object classification. Furthermore, our work inspires the feasibility of applying unified architectures from languages and images to the point cloud.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源